Study of solid particle materials as high temperature TES and HTF for CSP

Author: Dr. Alejandro Calderón Díaz

Advisors: Prof. Ana Inés Fernández, Prof. Mercè Segarra

Programme: Engineering and Applied Sciences

Research line: Materials for Energy

Thesis defense date: October 24, 2019


Abstract

Thermal Concentrating Solar Power (CSP) has proved to be price competitive and to have the advantage of integrating Thermal Energy Storage (TES). This adds the generation flexibility that other renewable energies, like wind or photovoltaics, does not have integrated. In order to continue developing this technology, solid particles CSP has been proposed. This design uses granular solid materials as Heat Transfer Fluid (HTF) and TES material in solar towers in order to be able to achieve higher operation temperatures, than current commercial CSP. Higher temperature means more efficiency in heat-to-electricity conversion, due to the use of better power generation cycles.

The main aim of this thesis is to enhance relevance and provide theoretical and experimental background for solid particles to be used as TES material and HTF for CSP tower power plants, from the materials perspective, by using existent or new methodologies. During this dissertation, current scientific output and relevance were studied in two separate contributions, one for CSP and the other for TES, both by using bibliometric methods. For the CSP study, additional analyses were carried out according to the harvesting technologies (parabolic trough, solar tower, Stirling dish and linear Fresnel). For the TES study, the additional analyses were performed according to the different ways to store thermal energy (sensible, latent and thermochemical).

For providing background, two state-of-the-art analyses were performed in order to get current development status of solid particle CSP. The first one was oriented to the plant design itself. Several solar receivers were analyzed, as well as TES, Heat Exchanger (HEX) and conveyance systems. During the second state-of-the-art, a material driven study was carried out in order to understand the behavior expected by the particle media and to identify some of the materials proposed by the most relevant researchers in this field. Next step of this dissertation was focused on establishing the design criteria for solid particle CSP technology, from the materials science perspective. This was achieved by finding the most relevant objectives that a power plant of this kind must comply, as well as the influence of the particle media properties and parameters.

Last part of this dissertation is related with two studies regarding the durability of some of the most promising solid particle materials from high temperature exposure effect perspective. The first study was focused on analyzing the effect of long term high temperature (900 °C) in the optical, mechanical, thermal and chemical properties and parameters of the solid particle material. The second study was focused in the effect of long term thermal cycling, in which is considered that the materials should resist several thousand charge-discharge cycles remaining with acceptable operational conditions. For achieving an accelerated thermal cycling test with realistic thermal conditions, a novel device was developed to perform the thousands of thermal cycles required. Electronic, software and hardware design was developed and implemented.

Funding: