Jessica Giro-Paloma, Camila Barreneche, Alex Maldonado-Alameda, Miquel Royo, Ana Inés Fernández, Josep M. Chimenos
https://doi.org/10.3390/ma12132144
Materials, 2019, 12, 13, 1-11
Quartile Q2, Impact 3.057
Within the thermal energy storage field, one of the main challenges of this study is the development of new enhanced heat storage materials to be used in the building sector. The purpose of this study is the development of alkali-activated cements (AACs) with mechanical properties to store high amounts of heat. These AACs incorporate wastes from industrial glass process as well as microencapsulated phase change materials (mPCMs) to improve the thermal inertia of building walls, and accordingly respective energy savings. The research presented below consists of the exhaustive characterization of different AACs formulated from some waste generated during the proper management of municipal waste used as precursor. In this case study, AACs were formulated with the waste generated during the recycling of glass cullet, namely ceramic, stone, and porcelain (CSP), which is embedding a mPCM. The addition of mPCM was used as thermal energy storage (TES) material. The mechanical properties were also evaluated in order to test the feasibility of the use of the new formulated materials as a passive TES system. The results showed that the AAC obtained from CSP (precursors) mixed with mPCMs to obtain a thermal regulator material to be implemented in building walls was reached successfully. The material developed was resistant enough to perform as insulating panels. The formulated materials had high storage capacity depending on the PCM content. The durability of the mPCM shell was studied in contact with alkaline medium (NaOH 4 M) and no degradation was confirmed. Moreover, the higher the content of mPCM, the lower the mechanical properties expected, due to the porosity increments with mPCM incorporation in the formulations.
Funding
The research leading this project has received funding from the Spanish Government (BIA2017–83912- C2–1-R), from European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from Agency for Business Competitiveness of the Government of Catalonia. This work has been partially funded by a Catalonian research Grants (FI-DGR 2017 and FI-DGR 2020).
Research category: Environment and Construction
Projects related: Desarrollo sostenible de cementos activados alcalinamente a partir de escorias de incineración de residuos municipales (BIA2017–83912- C2–1-R)